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Abstract

Background: To contain the spread of SARS-CoV-2, contact-tracing (CT) mobile apps were developed and deployed to identify
and notify individuals who have exposure to the virus. However, the effectiveness of these apps depends not only on their adoption
by the general population but also on their continued use in the long term. Limited research has investigated the facilitators of
and barriers to the continued use of CT apps.

Objective: In this study, we aimed to examine factors influencing the continued use intentions of CT apps based on the health
belief model. In addition, we investigated the differences between users and nonusers and between the US and UK populations.

Methods: We administered a survey in the United States and the United Kingdom. Respondents included individuals who had
previously used CT technologies and those without experience. We used the structural equation modeling technique to validate
the proposed research model and hypotheses.

Results: Analysis of data collected from 362 individuals showed that perceived benefits, self-efficacy, perceived severity,
perceived susceptibility, and cues to action positively predicted the continued use intentions of CT apps, while perceived barriers
could reduce them. We observed few differences between the US and UK groups; the only exception was the effect of COVID-19
threat susceptibility, which was significant for the UK group but not for the US group. Finally, we found that the only significant
difference between users and nonusers was related to perceived barriers, which may not influence nonusers’ continued use
intentions but significantly reduce experienced users’ intentions.

Conclusions: Our findings have implications for technological design and policy. These insights can potentially help governments,
technology companies, and media outlets to create strategies and policies to promote app adoption for new users and sustain
continued use for existing users in the long run.

(JMIR Form Res 2022;6(12):e40302) doi: 10.2196/40302
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Introduction

Overview
The COVID-19 outbreak, a consequence of SARS-CoV-2, has
had a major, long-lasting effect on our society. The COVID-19
pandemic has been considered the most significant public health
threat the world has experienced in the last 100 years [1]. In the
United States alone, there have been over 80 million reported
cases of the disease, with over a million fatal cases [2]. The
COVID-19 pandemic has lasted for over 2 years and several
new, high-transmissibility variants (eg, delta and omicron) have
emerged during this time. Various efforts (eg, the distribution
of multiple vaccines) and containment measures have been taken
worldwide, including social distancing, travel restrictions,
testing, and contact tracing (CT). Among these measures, digital
CT apps have been considered a particularly important strategy
for managing the pandemic and reducing COVID-19 cases and
deaths [3,4]. These apps can rapidly identify and notify
exposures to the disease [5,6].

Although traditionally performed manually [7], a set of CT apps
have been developed and deployed by different countries (eg,
China, the United States, the United Kingdom, Japan, Israel,
and Singapore), health providers (eg, Mayo Clinic), and
technology companies (eg, Apple and Google). Regardless of
the differences in app design and architecture, prior research
has indicated that the effectiveness of these apps is proportional
to the number of people who use them [8]; that is, to suppress
the epidemic, 80% of all smartphone users or 56% of the
population overall need to use the CT app [3,9]. A survey
conducted early in the pandemic reported that ≥60% of the
population indicated a willingness to install a hypothetical CT
app [10]. Yet, the actual adoption of these apps has been
considerably lower than anticipated [11], with installation rates
of ≤10% of the population in some countries where apps have
been deployed [12]. This fact highlights the intention-behavior
gap [13]—even though many people may have displayed the
intention to use a CT app—they do not take action by installing
or using it. Such low adoption rates are problematic and prevent
the actual value of CT apps from being realized.

According to the World Health Organization, several other
diseases could likely cause pandemics in the future, which
signifies the importance of preparing for such occasions, even
after the current pandemic is over [14]. Therefore, as an effective
approach to containing pandemics, there is a need to understand
why CT apps have not been as popular as anticipated and what
factors facilitate or hinder their continued use as pandemics go
on. Investigating this problem is critical not only for addressing
the COVID-19 pandemic but also for understanding how to
design CT technologies and apps for future health crises.

Ample research has been conducted in the early phase of the
COVID-19 pandemic to investigate factors that could influence
the adoption and uptake of CT apps [15]. For instance, prior
work pointed to the influence of demographics (eg, age and sex)
[16-18], individual beliefs and attitudes (eg, trust, privacy
concerns, or access to technologies) [10,19,20], situational
factors (eg, COVID-19 cases and deaths or lockdown measures)
[21], and contextual factors (eg, cultural, regional, and national

differences) [15]. Despite the important contributions made by
these studies, as Jamieson et al [22] stated, “the collective utility
of contact tracing technology to suppress the spread of viruses
depends not only on the adoption of contact tracing apps but
also on their continued use.” In addition, compared with the
beginning of the pandemic, our society has gained more
knowledge about COVID-19 and a significant portion of the
population has been vaccinated, all of which could affect
people’s willingness to continue the use of CT apps. More
importantly, recent evidence in health informatics shows that
sustained and continued use of CT apps may have different
motivators than the initial adoption of these technologies
[23,24]. To our knowledge, there is limited research that pays
scholarly attention to the continued use of CT apps [25].

Building upon prior work in this domain, we aim to address this
research gap by proposing and validating a research model of
the predictors of continued use of CT apps, defined as extending
the use of CT apps beyond the initial stages of adoption and the
first few uses. Our specific research questions include the
following: (1) What are the predictors of an individual’s
continued intention to use CT apps? (2) How do user behaviors
and predictors differ among users who had experience versus
those who did not and between individuals in the United States
versus the United Kingdom? To answer these research questions,
we surveyed respondents in the United States and the United
Kingdom from among those who had previously used CT
technologies and those without any experience. Our findings
highlighted several factors (eg, perceived benefits, self-efficacy,
perceived severity, perceived susceptibility, and cues to action)
that have positive impacts on the continued use of CT apps. In
contrast, perceived barriers could reduce people’s continued
use intentions. We also observed some differences between the
United States and the United Kingdom and between users and
nonusers. Our study could provide important insights for
governments, technology companies, and media outlets to
determine how to promote CT apps better and sustain continued
use in the long run.

Background
Since the outbreak of the COVID-19 pandemic, seminal research
has studied user acceptance and use intention of CT apps based
on several theoretical models, such as the health belief model
(HBM) [26], the protection motivation theory [27], health
behavior change [28], cognitive appraisal theory [29], procedural
fairness theory and cultural dimension theory [19], and the
unified theory of acceptance and use of technology [30-32].
These studies primarily focused on evaluating the public’s
attitude; for example, individuals’ willingness or intention to
install and adopt a hypothetical CT app.

This body of prior work highlighted a set of factors that
influence the adoption and use intention of CT apps, ranging
from individual characteristics (eg, age, sex, and experience
with technology) to situational (eg, lockdown measures) and
contextual factors (eg, cultural and national differences). For
example, younger ages [10,16,17], higher education level
[18,26,33], and experience using smartphone apps [10,34] are
associated with positive intentions to download a CT app. In
addition, the perceptions, trust, and acceptance of CT
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technologies seem to vary in different countries and cultural
backgrounds. For example, countries with collectivist values,
such as those in Asian regions, usually see broad acceptance
from their citizens [10,16]; in contrast, the US and European
respondents generally report lower acceptance [10,17,18,35].
Situational factors, such as the total number of COVID-19 cases
in a region and lockdown measures, could also affect people’s
willingness to download the CT app [21,25]. For example, those
living in places with lockdown measures or restrictions on
mobility are less likely to download and use the app [25].

In summary, prior work has primarily investigated the
acceptance and intention to adopt and use CT technology. This
is because most of the reviewed studies were conducted before
or shortly after the introduction of CT apps; therefore, they were
only able to measure people’s willingness or intention to use a
newly developed CT app. In addition, although some studies
examined the actual use of CT apps with users [17,20,36,37],
they only explored adoption at an early stage. Thus,continued
use remains to be investigated [22,25]. To that end, in this study,
we examined the continued use of CT apps beyond the initial
stages of adoption and the first few interactions. We included
both prior app users and nonusers in our study to investigate
the factors that impact a person’s continuous intention to use
CT apps and how the influence of key predictors may differ
between the user and nonuser groups.

Theoretical Framework and Hypotheses Development
In this work, we examine which factors influence an individual’s
continued use of a CT app by adopting the HBM [38,39]. We
chose this theoretical model because the HBM is a widely
recognized model in the context of health behavior change [38]
and has been used by many prior studies to explain why people
follow healthy choices of action in the presence of a threat. This
is comparable with our study’s context, where individuals may
continue to use a CT app as a behavior to help counteract the
threat of contracting and spreading COVID-19.

The HBM consists of several constructs including perceived
susceptibility, perceived benefits, perceived barriers, perceived
severity, and cues to action. The model assumes that people
who anticipate a health threat are more willing to perform a
protective health behavior because they believe that such an
action will reduce a severe illness [40,41]. The 2 constructs of
the HBM—perceived susceptibility and perceived severity—are
highly related to this cognitive presumption. Perceived
susceptibility represents an individual’s perceived risk or
likelihood of catching a disease due to a particular behavior.
Perceived severity refers to individuals’beliefs about the impact
of the harm of pursuing a particular behavior. Several studies
have revealed that perceived susceptibility and perceived
severity can cause people to take protective actions, such as
using and adopting mobile health technologies [42,43]. In
relation to the current COVID-19 pandemic, if people perceive
themselves as liable to COVID-19 infection and related health
complications, they are more inclined to continue using the app
to reduce the infection risk of COVID-19. In addition, someone
who perceives high health threats and severity tends to continue
using the CT app. Therefore, we hypothesized the following:

Hypothesis 1: The perceived susceptibility to
COVID-19 is positively associated with the continued
use intention of CT apps.

Hypothesis 2: The perceived threat of COVID-19 is
positively associated with the continued use intention
of CT apps.

Perceived benefits refer to a person’s belief that recommended
health behaviors will be beneficial in preventing the disease or
reducing its effect. A high perception of benefits increases the
likelihood of adopting such behavior. Perceived barriers, on
the contrary, represent the costs of or obstacles to performing
the recommended health behavior, including tangible costs (eg,
time, money, and knowledge acquisition) and psychological
costs (eg, feeling anxious, pessimistic, and embarrassed) [44].
Low perception of barriers increases a person’s willingness to
adopt a particular behavior. The model assumes that the more
benefits the individual believes there are from a new behavior,
and the lower the obstacles to performing such behavior, the
greater the chance of adopting it [45]. In our study context,
perceived benefits could include personal benefits (eg, being
formed of a potential infection to protect a person’s health) and
social benefits (eg, helping the community contain the spread
of the coronavirus). Perceived barriers, as pointed out in prior
works [46,47], include privacy issues and security concerns
raised by the app. These concerns could present barriers to using
the app in the long term. Therefore, we hypothesized as follows:

Hypothesis 3: The perceived benefits of CT apps are
positively associated with the continued use intention
of CT apps.

Hypothesis 4: The perceived barriers of CT apps are
negatively associated with the continued use intention
of CT apps.

The HBM is often complemented by constructs and factors
related to health and protective behavior [48]. Therefore, we
added perceived self-efficacy to the model, as we believe that
the continued use of CT apps is also influenced by individuals’
beliefs in their competence to use the app. Perceived
self-efficacy is an individual’s belief that he or she can
successfully perform a particular health behavior. A few studies
have demonstrated that self-efficacy is a significant factor in
predicting health behaviors [49,50]. In addition, research has
addressed the role of self-efficacy in predicting users’ intention
to continue using information technology systems [51]. In the
context of COVID-19, if individuals have found mastery of the
app, they may be more inclined to adopt the app [19,26,27].
However, whether having the ability to use CT apps could
predict continued intention is understudied. Therefore, we
hypothesized the following:

Hypothesis 5: Perceived self-efficacy is positively
associated with the continued use intention of CT
apps.

Cues to action are the circumstances that inspire the readiness
to act. This construct can influence individuals’ decisions on
whether to engage in protective behaviors. Concerning
COVID-19, cues to action include exposure to media content
and the infection experience of close friends and family
members. It has been 2 years since the outbreak of the pandemic
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when this study was performed. People, especially existing
users of CT apps, have had a variety of ways to get to know
about COVID-19 and experience CT technology. Therefore,
they may be more inclined to continue using the app. Our
hypothesis was as follows:

Hypothesis 6: Cues to action are positively associated
with the continued use intention of CT apps.

Textbox 1 provides an overview of the model constructs and
their definitions in this study. In addition to these constructs,
we included several factors that may influence the behavioral
decision to use the app, such as individual characteristics (eg,
age, sex, or educational level), contextual differences (United
States vs United Kingdom), and COVID-19 experiences
(whether they previously contracted COVID-19).

Textbox 1. Overview of contextualized constructs according to the health belief model.

• Perceived benefits of contact-tracing (CT) app use: perceptions about the positive outcomes of using CT apps.

• Perceived barriers of CT app use: perceptions about the negative outcomes or obstacles of using CT apps.

• COVID-19 threat severity: the extent to which one’s health might be negatively affected by the COVID-19 pandemic.

• COVID-19 threat susceptibility: the extent to which one feels vulnerable to contracting COVID-19.

• Self-efficacy to use CT apps: belief in having the resources, skills, and ability to continue using CT apps.

• Cue to action (using CT apps): cues that trigger the use of CT apps.

• (CT apps) Continued use intention: willingness to continue the use of a mobile health app [52].

Methods

Data Collection
Pursuant to our research questions, we conducted a survey study
among individuals in the United States and the United Kingdom
to evaluate their intentions to continue using CT apps. We
conducted the surveys in fall 2021 (October to December). To
be open in our data collection and insights, we surveyed
individuals who previously used CT technologies, in addition
to those who have had no prior experience. This helped us gauge
responses from both users and nonusers to examine what would
generally determine decisions for long-term engagement with
CT apps.

Individuals were recruited with the help of 2 survey companies:
Amazon Mechanical Turk in the United States and Prolific in
the United Kingdom. We used a web-based survey (Qualtrics)
to collect the responses. No identifying information was
collected to ensure anonymity. Nonetheless, we collected
demographic information as shown in Table 1. To calculate the
minimum sample size necessary for variance-based structural
equation model analysis, we followed the study by Hair et al
[53], which suggests a sufficient sample that is a minimum of
10 times the number of items of the formative indicators in the
model. Given that we had 24 items formatively represented in
the model, we concluded that a minimum sample size of 240
was required.

Of the 532 individuals who initiated the surveys, 363 (68.2%;
Table 1) completed them (171 US and 203 UK respondents).
The response rate is acceptable, given the sensitive nature of
some questions [54]. Yet, we checked for nonresponse bias by
comparing the demographic characteristics of respondents and
nonrespondents; the results showed no significant differences,
suggesting that nonresponse bias was not an issue in our study.

The measurement items were selected from previously validated
measures [26,55,56] and adapted to fit the study context (see
Table 2 for measurement items). Although the measurements
were validated in prior research, we conducted a pilot study and
asked a convenience sample of 12 CT app users to review and
reflect on the survey and provide qualitative feedback regarding
the questionnaire guide measurement instruments. We also
asked them to provide written feedback on the appropriateness,
readability, and meaningfulness of the measures and their fit to
the context of the study. On the basis of the qualitative feedback
provided, we revised the survey guidelines to avoid possible
confusion in responding and introducing any bias. Furthermore,
we have slightly reworded a few items for clarity. For instance,
item 1 in perceived barriers was changed from “The contact
tracing app will violate my rights” to “The contact tracing app
will violate my privacy.” Overall, the pilot study helped us
improve the quality and accuracy of the data collection
instrument.
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Table 1. Demographic characteristics.

Values (N=363), n (%)

Age (years)

50 (14)18-25

119 (33)25-35

99 (27)35-45

66 (18)45-55

29 (8)55-78

Sex

160 (44)Male

200 (55)Female

3 (1)Nonbinary

Education

6 (2)Less than high school

45 (12)High school graduate

85 (23)Some college

44 (12)2-year degree

138 (38)4-year degree

40 (11)Professional degree

5 (1)Doctorate

Contact-tracing app experience

125 (56)Currently using

114 (16)Used in the past

124 (22)Never used
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Table 2. Measurement items and loadings.

LoadingsVariable and items

Perceived benefits of contact-tracing apps [26]

0.785Thanks to the contact-tracing app, I will be more on my guard when I have face-to-face contact.

0.719Thanks to the contact-tracing app, I will take more precautions not to spread the Coronavirus myself (eg,
wash my hands, maintain distance from others, and limit my outside movements).

0.732By using the contact-tracing app, I will help public authorities combat the Coronavirus.

0.752The contact tracing app will allow me to protect myself from the Coronavirus.

Perceived barriers of contact-tracing app use [26]

0.855The contact-tracing app will violate my privacy.

0.91The contact-tracing app will create tensions between individuals who are infected by the Coronavirus and
those who are not.

COVID-19 threat severity [26]

0.843If I get infected by the Coronavirus, it will have important health consequences for me.

0.895If I get infected by the Coronavirus, my health will be severely affected.

0.914If I get infected by the Coronavirus, my health will be significantly reduced.

COVID-19 threat susceptibility [26]

0.826I am at risk of being infected by the Coronavirus.

0.649It is likely that I would suffer from the Coronavirus.

0.738It is possible that I could be infected by the Coronavirus.

Self-efficacy to use contact-tracing apps [57]

0.914I have the knowledge needed to use the contact-tracing app.

0.915I have the necessary resources to use the contact-tracing app.

0.724I can get help from others if I experience difficulties using the contact-tracing app.

Cue to action (using contact-tracing apps) [26]

To what extent do the following cues prompt the use of a contact-tracing app?

0.712Hearing someone near you contracted COVID-19

0.938Website of a newspaper, TV or radio station, or magazine

0.984App of a newspaper, TV or radio station, or magazine

0.901News shared on social media (Facebook, YouTube, Twitter, Instagram, WhatsApp, etc)

0.908Alerts through email and newsletters

(Contact-tracing apps) Continued use intention [52]

0.912I would be willing to continue using contact-tracing app.

0.920I plan to continue using contact-tracing app.

0.901I want to continue using contact-tracing app in the future.

Control factors

—aDemographic factors: age, sex, education

—COVID-19 experience: Have you or a person close to you (ie, a close friend or family) been affected by
COVID-19?

—Contact-tracing app experience

aNot available.

Data Analysis
Before testing the model, we assessed reliability and validity
(ie, interconstruct correlations, Cronbach α values, composite
reliability, and average variance extracted), as well as descriptive

statistics (Table 3). These variables showed good reliability.
The α and composite reliability scores were all above the 0.7
acceptable thresholds [58]. The average variance extracted
scores were also above 0.5, indicating good convergent validity

JMIR Form Res 2022 | vol. 6 | iss. 12 | e40302 | p. 6https://formative.jmir.org/2022/12/e40302
(page number not for citation purposes)

Zhang & VaghefiJMIR FORMATIVE RESEARCH

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


(ibid). Furthermore, the square roots of average variance
extracted scores (on the matrix’s diagonal) were higher than the
correlations with the other constructs. In addition, the item
loadings (see Table 2, last column) were all above 0.7 and
loaded primarily onto their factor, which confirms a good
discriminant validity [58]. Altogether, the results supported the
reliability and validity of the constructs [59].

Subsequently, we used the structural equation modeling
technique to validate the proposed research model and
hypotheses. Finally, we ran additional analyses to measure the
differences between users and nonusers and between-country
differences. More details about these analyses are provided in
the Results section.

Table 3. Descriptive statistics, correlations, reliability, and validity.

7654321AVEbCRaCronbach αValue, mean (SD)Constructs

——————d0.890.790.94.914.40 (1.60)1. Perceived benefits of CTc app use

—————0.88−0.440.770.87.714.17 (1.58)2. Perceived barriers of CT app use

————0.90−0.100.220.900.92.854.22 (1.20)3. COVID-19 threat severity

———0.880.49−0.210.220.770.91.854.72 (1.44)4. COVID-19 threat susceptibility

——0.840.03−0.02−0.080.240.710.88.794.72 (1.12)5. Self-efficacy to use CT apps

—0.870.200.310.22−0.440.700.760.94.922.61 (1.11)6. Cue to action (using CT apps)

0.980.740.250.290.13−0.550.720.960.99.984.28 (2.03)7. (CT apps) Continued use inten-
tion

aCR: composite reliability.
bAVE: average variance extracted.
cCT: contact tracing.
dNot applicable.

Ethics Approval
This study was approved by the institutional review board of
Pace University (IRB number 172765) before conducting any
data collection.

Results

Structural Model Testing
We used a variance-based structural equation model analysis
with SmartPLS (version 3; SmartPLS) to test the proposed
research model. The results (Figure 1) supported the proposed
hypotheses. We found that the perceived benefits of CT apps
contribute to higher continued use intention (β=.336; P<.001),
while the perceived barriers can reduce individuals’willingness

to do so (β=−0.208; P<.001). We also found that the perceptions
of severity (β=.092; P=.02) and susceptibility (β=.096; P=.01)
to COVID-19 as a significant health threat positively predict
one’s continued use intention. Next, we found that having
self-efficacy to use CT apps, that is, being confident about
having the knowledge and skills required to work with the app,
can positively explain continued use intentions (β=.393;
P<.001). Finally, cues from news, media, and peers can increase
continued use intentions (β=.068; P=.03). Together, these factors
explained 67% of the variance of the intention to continue using
a CT app.

Although the direct hypothesized relationships were significant,
the control variables (eg, age, sex, or education) posed no
significant effect on the model and hypothesized relationships.
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Figure 1. Results of the structural equation modeling.

Post Hoc Analysis 1: Testing Country-Based
Differences
We performed additional analyses to check for heterogeneity
in individuals’ CT app use. We tested the possible differences
between app users’ intentions and their predictors (1) among
individuals in the United States (n=160) versus the United
Kingdom (n=203) and (2) among those who had previously
used CT apps (n=239) versus those who did not (n=124).
Accordingly, we followed the multigroup analysis (MGA)
procedure [60] in PLS, which allows for direct nonparametric
testing of the path estimates in the structural model for each
bootstrap sample.

One potential concern when running an MGA is the
measurement invariance [61]; hence, it is important to assess
whether the construct measures are invariant between the

samples [60]. To establish measurement invariance, we checked
the difference in item loadings across the 2 samples and whether
the difference is statistically significant. Following the procedure
by Henseler et al [62], all P values were above .05, except for
1 item (Benefits_4), which we dropped from further analysis
(leaving 3 other reflective items for that construct). Next, we
tested the differences in the complete structural model (Table
4). The results showed that the influence of predictors is largely
similar in both the US and UK groups. Yet, we found a
significant difference regarding the effect of COVID-19 threat
susceptibility (P=.01), as it significantly contributed to continued
use intention for the UK group but not for the US group. In
addition, when considering each group individually, we found
nonsignificant effects for COVID-19 threat severity and
susceptibility among the US group and self-efficacy to use CT
apps for the UK group.

Table 4. Results of post hoc analysis 1.

P value (dif-
ference)

Path coefficients
(difference)

P value (United
Kingdom)

Path coefficients
(United Kingdom)

P value (United
States)

Path coefficients
(United States)

Predictor: (CTa apps) continued
use intention

.74b−0.04<.0010.36<.0010.32Perceived benefits of CT app use

.77b−0.02<.001−0.19<.001−0.21Perceived barriers of CT app use

.29b−0.08.010.12.51b0.04COVID-19 threat severity

.01−0.21<.0010.19.71b−0.02COVID-19 threat susceptibility

.06b0.13.85b0.01.010.14Self-efficacy to use CT apps

.76b0.04<.0010.38<.0010.41Cue to action (using CT apps)

aCT: contact tracing.
bNot significant.
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Post Hoc Analysis 2: Testing Experience-Based
Differences
In the second post hoc analysis, we checked for potential
differences in findings based on individuals’ prior experience
with CT apps. Following the same procedure, we assessed the
measurement item invariance using the MGA procedure in PLS.
We found that 2 items (Benefit_4 and CuestoAction_2) were
not invariant across samples and hence were dropped before
the MGA. Next, we tested for significant differences in the
effects of predictors between the 2 groups (Table 5). We found

that the only significant difference is related to the effect of
perceived barriers. The perceived barriers cannot influence
nonusers’continued use intentions, while they can significantly
reduce the experience group’s intentions. Finally, when the
model was tested in each subsample, we found that for
experienced users, the effects of perceived threat severity and
self-efficacy in using CT apps were nonsignificant. For the
group with no prior experience, in addition to the nonsignificant
effect of self-efficacy, the effect of perceived barriers was found
to be nonsignificant.

Table 5. Results of post hoc analysis 2.

P value (differ-
ence)

Path coefficients
(difference)

P value (no
exp)

Path coefficients
(exp)

P value (no

expb)

Path coefficients

(expa)

Predictors of intention

.99d<0.001<.0010.42<.0010.42Perceived benefits of CTc app use

.01−0.23.49d−0.05<.001−0.28Perceived barriers of CT app use

.33d−0.09.030.15.17d0.07COVID-19 threat severity

.34d−0.08.030.17.050.09COVID-19 threat susceptibility

.43d0.07.90d0.01.09d0.08Self-efficacy to use CT apps

.08d−0.17<.0010.43<.0010.26Cue to action (using CT apps)

aExp: user with prior CT app experience.
bNo exp: users who have had no prior experience with CT apps.
cCT: contact tracing.
dNot significant.

Discussion

Principal Findings
This study aimed to improve the current knowledge of the
predictors for the continued use of CT apps. To this end, we
draw upon the HBM [38,39] to propose a research model that
shows the effect of 6 predictors. Analysis of data collected from
362 individuals showed that perceived benefits, self-efficacy,
perceived severity, perceived susceptibility, and cues to action
positively predicted the continued use intentions of CT apps,
while perceived barriers could reduce them. Furthermore, we
tested the possible differences among individuals in the United
States versus the United Kingdom and those who previously
used CT apps versus those who did not. These analyses revealed
that the influence of critical predictors is similar in both the US
and UK groups, with 1 exception—the effect of COVID-19
threat susceptibility is significant for the UK group but not for
the US group. In addition, we noticed that the only significant
difference between users and nonusers is related to the effect
of perceived barriers; perceived barriers may not influence
nonusers’continued use intentions, while they can significantly
reduce experienced users’ intentions.

Prior research has provided mixed results regarding the
relationship between whether people are worried about
COVID-19 and their intention to use a CT app [15]. Some
studies reported that perceived health threat is positively
associated with acceptance of CT app [37]. In addition, people
who perceived lower health threats from COVID-19 tend to

have a lower intention to embrace CT technology [16,37].
However, a few other studies showed contrasting findings—that
perceived severity and perceived susceptibility were not related
to the motivation for using CT apps [26,27]. In our study, when
considering the entire sample, we found that perceived severity
and susceptibility of COVID-19 could positively predict
continued use intention. One possible explanation is that the
prior studies found nonsignificance of a health threat in terms
of CT app adoption intention at the early stage of the crisis when
the government issued stay-at-home orders and mandated mask
wearing. These measures limit people’s contact with others,
which could lead them to think that they are less susceptible to
the virus. In contrast, at the time of our study, confinement
measures and mandatory mask wearing were lifted, while a new
highly transmissible variant (omicron) quickly spread in the
community; such a situation could have influenced existing
users’ threat appraisal and intentions to continue using their CT
app. Another explanation could be that individuals perceived
adoption and continued use quite differently and considered
different factors important in their decisions [63].

Regarding the impact of perceived benefits, prior studies found
that social benefits (eg, using the app for the benefit of society)
motivated CT app adoption [10,20,64,65]. However, mixed
results were reported about the effect of personal benefits
[19,66]; for example, as pointed out by Trang et al [66],
compared with perceived social benefits, personal benefits seem
to minimize the willingness to use a CT app among both critical
and undecided respondents. In our study, we found that both
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perceived social benefits and personal benefits contributed to
higher continued use intention of CT apps.

Many studies have highlighted the significant relationship
between perceived barriers and CT app adoption intention
[19,20,67]. A prominent perceived barrier for users is their
concern about privacy issues raised by the app [26,34]. For
example, the fear of data breaches or data misuse [18,27] and
the fear of surveillance by the government [10,68] are significant
barriers that prevent citizens from adopting CT apps. Consistent
with prior findings, we found that perceived barriers can reduce
individuals’willingness to continue using CT apps. This finding
of the negative impact of perceived privacy on the uptake and
continued use of CT apps highlighted the importance of
informing users of how their privacy and data security are
protected within the app. Privacy concern was also one of the
motives behind developing and launching decentralized CT
apps, which store and analyze personal data on users’ devices,
while the central server plays only a minor role in the CT
process [69]. In addition, some CT methods have been proposed
to use data-minimizing solutions such that they do not use user
location data [70]. Future studies can investigate whether
decentralized CT systems and clarifying data access can address
these privacy concerns.

Individuals’ beliefs in their competence to use the app
(self-efficacy) have been associated with their acceptance or
intention to use a CT app in multiple studies [19,26,27]. In
particular, self-efficacy for app use decreases with age, as the
younger population has more experience with digital
technologies such as smartphone apps [26]. Similar to the results
reported in prior work, our study found that having self-efficacy
to use CT apps can positively explain continued use intentions.
Future work could examine how to promote app uptake among
the population with low technical proficiency and experience.
This effort may also contribute to bridging the digital divide.

Our study found a positive relationship between cues to action
(eg, exposure to information) and CT app continued use. This
finding indicates that more (traditional and on the web) media
coverage of CT apps can enhance their continued use. This
finding aligns with prior work reporting that people’s media
consumption could influence their attitudes and intentions
toward the app [71]. In this regard, more research can be
conducted to investigate and analyze media coverage and
web-based discussions on social media to gain insights into
concerns and questions about the app. These insights can be
used to inform app developers and governments to better
communicate the usefulness and effectiveness of CT apps.

Our study also revealed between-country differences, even
though the United States and the United Kingdom have followed
similar COVID-19 measures. For example, perceived
susceptibility has a significant effect on the UK group but not
on the US group. In addition, we found nonsignificant effects
for COVID-19 threat severity and susceptibility in the US group.
This finding could be related to the upsurge of COVID-19 cases
in the United Kingdom at the time of data collection, and United
Kingdom residents may have felt more susceptible to the threat
of COVID-19 during that period.

Finally, we observed differences in the effects of predictors
between users and nonusers. More specifically, the perceived
barriers were not associated with nonusers’ continued use
intentions, but they could significantly reduce the intentions of
the experienced group. One explanation for this difference could
be that those who are yet to use CT technology cannot have an
assessment of the potential challenges they may face, such as
privacy and security, and this construct was not perceived as
important in nonusers’ decisions. As privacy concerns may not
be the primary reason for nonadoption of CT apps among
nonusers, future work needs to investigate the primary
facilitators and barriers for nonusers to adopt and start using
CT apps.

Overall, our results revealed that the factors contributing to the
adoption of CT apps also play an essential role in existing users’
intention to continue app use. More specifically, perceived
benefits, self-efficacy, perceived severity, perceived
susceptibility, and cues to action can motivate the continued
use of CT apps, whereas perceived barriers could reduce an
individual’s intention to continue using a CT app. Another
interesting finding is that perceived barriers could significantly
reduce experienced user’s continued use intentions, but this
predictor had a limited influence on nonusers’ intentions.

Practical Implications
Our study has several practical implications. First, as perceived
social and personal benefits contributed to higher continued use
intention of CT apps, these apps should be designed to
continuously inform users about the potential social and personal
benefits to ensure the effective use of CT apps in the long run.
For example, these apps could present timely and updated
informational resources (eg, advice on self-isolation, preventive,
and testing options) to inform and assist users according to the
COVID-19 trend (eg, the emergence of a new variant). In
addition, a clear description of benefits to the user and society
[66] as well as basic statistics that help users understand how
the app aids people and society combat COVID-19 [34] are
worth exploring. Second, more media coverage of CT apps
might lead to continued use; as such, marketing and promoting
such tools on both traditional media outlets and popular social
media platforms (eg, Instagram or TikTok) could be helpful.
This is similar to recent suggestions [72] about viable CT
promotional strategies, such as using public health experts,
independent privacy experts, and celebrities to endorse using
these apps. In addition, over the past few years, we have
witnessed much misinformation about COVID-19; the
government and social media company decision makers should
target misinformation about CT apps and provide proven factual
and scientific information about these apps. Third, given that
the perception of barriers (such as loss of privacy) could
significantly reduce continued use, it might be useful to provide
personalized options according to each user’s preference for
data sharing. For example, CT apps could offer an opt-in feature
for users who are willing to contribute more location and
personal data to obtain more useful features, while allowing
those who are more concerned about data privacy risks to
provide minimum data access yet be able to use the basic CT
service [34].
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Limitations and Future Work
There are several limitations. First, we had little representation
of older adults and those with limited education levels. As age
and education level could be associated with the use of CT apps,
data collection in the future would benefit from a booster sample
of underrepresented and minority participants with a low level
of education and technology proficiency to better understand
inequalities across diverse populations. Second, we conducted
a cross-sectional study rather than a longitudinal study. Future
work should examine the facilitators of and barriers to the
long-term use of CT apps. Finally, other models and constructs
may provide important insights into the continued use of CT
apps. Future studies can contribute to the understanding of CT
apps’ continued use and adoption by adopting other models.

Conclusions
The effectiveness of CT apps depends on not only their uptake
by citizens but also their continued use during the COVID-19
pandemic. Our work contributes to the knowledge of facilitators
and barriers in determining an individual’s continued use
intention of CT apps. We found that perceived benefits,
self-efficacy, perceived severity, perceived susceptibility, and
cues to action have significant positive impacts on the continued
use intentions of CT apps, while perceived barriers can reduce
such intentions. Further analyses revealed some degree of
difference between users and nonusers. Those insights can be
used by governments, technology companies, and media outlets
to better promote the adoption and continued use of CT apps.
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